53 research outputs found

    Integrating the common variability language with multilanguage annotations for web engineering

    Get PDF
    Web applications development involves managing a high diversity of files and resources like code, pages or style sheets, implemented in different languages. To deal with the automatic generation of custom-made configurations of web applications, industry usually adopts annotation-based approaches even though the majority of studies encourage the use of composition-based approaches to implement Software Product Lines. Recent work tries to combine both approaches to get the complementary benefits. However, technological companies are reticent to adopt new development paradigms such as feature-oriented programming or aspect-oriented programming. Moreover, it is extremely difficult, or even impossible, to apply these programming models to web applications, mainly because of their multilingual nature, since their development involves multiple types of source code (Java, Groovy, JavaScript), templates (HTML, Markdown, XML), style sheet files (CSS and its variants, such as SCSS), and other files (JSON, YML, shell scripts). We propose to use the Common Variability Language as a composition-based approach and integrate annotations to manage fine grained variability of a Software Product Line for web applications. In this paper, we (i) show that existing composition and annotation-based approaches, including some well-known combinations, are not appropriate to model and implement the variability of web applications; and (ii) present a combined approach that effectively integrates annotations into a composition-based approach for web applications. We implement our approach and show its applicability with an industrial real-world system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Narrowband organic photodetectors-towards miniaturized, spectroscopic sensing

    Get PDF
    Omnipresent quality monitoring in food products, blood-oxygen measurement in lightweight conformal wrist bands, or data-driven automated industrial production: Innovation in many fields is being empowered by sensor technology. Specifically, organic photodetectors (OPDs) promise great advances due to their beneficial properties and low-cost production. Recent research has led to rapid improvement in all performance parameters of OPDs, which are now on-par or better than their inorganic counterparts, such as silicon or indium gallium arsenide photodetectors, in several aspects. In particular, it is possible to directly design OPDs for specific wavelengths. This makes expensive and bulky optical filters obsolete and allows for miniature detector devices. In this review, recent progress of such narrowband OPDs is systematically summarized covering all aspects from narrow-photo-absorbing materials to device architecture engineering. The recent challenges for narrowband OPDs, like achieving high responsivity, low dark current, high response speed, and good dynamic range are carefully addressed. Finally, application demonstrations covering broadband and narrowband OPDs are discussed. Importantly, several exciting research perspectives, which will stimulate further research on organic-semiconductor-based photodetectors, are pointed out at the very end of this review

    Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results

    Get PDF
    The dissolution of semi-volatile inorganic gases such as ammonia and nitric acid into the aerosol aqueous phase has an important influence on the composition, hygroscopic properties, and size distribution of atmospheric aerosol particles. The representation of dissolution in global models is challenging due to inherent issues of numerical stability and computational expense. For this reason, simplified approaches are often taken, with many models treating dissolution as an equilibrium process. In this paper we describe the new dissolution solver HyDiS-1.0, which was developed for the global size-resolved simulation of aerosol inorganic composition. The solver applies a hybrid approach, which allows for some particle size classes to establish instantaneous gas-particle equilibrium, whereas others are treated time dependently (or dynamically). Numerical accuracy at a competitive computational expense is achieved by using several tailored numerical formalisms and decision criteria, such as for the time- and size-dependent choice between the equilibrium and dynamic approaches. The new hybrid solver is shown to have numerical stability across a wide range of numerical stiffness conditions encountered within the atmosphere. For ammonia and nitric acid, HyDiS-1.0 is found to be in excellent agreement with a fully dynamic benchmark solver. In the presence of sea salt aerosol, a somewhat larger bias is found under highly polluted conditions if hydrochloric acid is represented as a third semi-volatile species. We present first results of the solver's implementation into a global aerosol microphysics and chemistry transport model. We find that (1) the new solver predicts surface concentrations of nitrate and ammonium in reasonable agreement with observations over Europe, the USA, and East Asia, (2) models that assume gas-particle equilibrium will not capture the partitioning of nitric acid and ammonia into Aitken-mode-sized particles, and thus may be missing an important pathway through which secondary particles may grow to radiation- and cloud-interacting size, and (3) the new hybrid solver's computational expense is modest, at around 10 % of total computation time in these simulations

    The role of spin in the degradation of organic photovoltaics

    Get PDF
    Stability is now a critical factor in the commercialization of organic photovoltaic (OPV) devices. Both extrinsic stability to oxygen and water and intrinsic stability to light and heat in inert conditions must be achieved. Triplet states are known to be problematic in both cases, leading to singlet oxygen production or fullerene dimerization. The latter is thought to proceed from unquenched singlet excitons that have undergone intersystem crossing (ISC). Instead, we show that in bulk heterojunction (BHJ) solar cells the photo-degradation of C60 via photo-oligomerization occurs primarily via back-hole transfer (BHT) from a charge-transfer state to a C60 excited triplet state. We demonstrate this to be the principal pathway from a combination of steady-state optoelectronic measurements, time-resolved electron paramagnetic resonance, and temperature-dependent transient absorption spectroscopy on model systems. BHT is a much more serious concern than ISC because it cannot be mitigated by improved exciton quenching, obtained for example by a finer BHJ morphology. As BHT is not specific to fullerenes, our results suggest that the role of electron and hole back transfer in the degradation of BHJs should also be carefully considered when designing stable OPV devices

    Intrinsic Detectivity Limits of Organic Near-Infrared Photodetectors

    Get PDF
    Organic photodetectors (OPDs) with a performance comparable to that of conventional inorganic ones have recently been demonstrated for the visible regime. However, near-infrared photodetection has proven to be challenging and, to date, the true potential of organic semiconductors in this spectral range (800–2500 nm) remains largely unexplored. In this work, it is shown that the main factor limiting the specific detectivity (D*) is non-radiative recombination, which is also known to be the main contributor to open-circuit voltage losses. The relation between open-circuit voltage, dark current, and noise current is demonstrated using four bulk-heterojunction devices based on narrow-gap donor polymers. Their maximum achievable D* is calculated alongside a large set of devices to demonstrate an intrinsic upper limit of D* as a function of the optical gap. It is concluded that OPDs have the potential to be a useful technology up to 2000 nm, given that high external quantum efficiencies can be maintained at these low photon energies

    Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption

    Get PDF
    Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection

    Reverse dark current in organic photodetectors and the major role of traps as source of noise

    Get PDF
    Organic photodetectors have promising applications in low-cost imaging, health monitoring and near-infrared sensing. Recent research on organic photodetectors based on donor–acceptor systems has resulted in narrow-band, flexible and biocompatible devices, of which the best reach external photovoltaic quantum efficiencies approaching 100%. However, the high noise spectral density of these devices limits their specific detectivity to around 1013 Jones in the visible and several orders of magnitude lower in the near-infrared, severely reducing performance. Here, we show that the shot noise, proportional to the dark current, dominates the noise spectral density, demanding a comprehensive understanding of the dark current. We demonstrate that, in addition to the intrinsic saturation current generated via charge-transfer states, dark current contains a major contribution from trap-assisted generated charges and decreases systematically with decreasing concentration of traps. By modeling the dark current of several donor–acceptor systems, we reveal the interplay between traps and charge-transfer states as source of dark current and show that traps dominate the generation processes, thus being the main limiting factor of organic photodetectors detectivity

    Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells

    Get PDF
    Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control
    • …
    corecore